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   Introduction     
 

In MGD - installations [1-4], intended to generate high magnetic fields using compression of magnetic 
flux by a conducting material which is preliminary accelerated by explosion, electromagnetic or the other forces, 
the magnetic field increases until the magnetic pressure becomes equal to the hydrodynamic pressure H from 

, where ρ  is the density, Η 2 4/ π υ ρ= 2 Η is the magnetic field intensity, υ  is the velocity of a conducting 
material. In the generation of the greatest pulsed magnetic fields the main limitations are the dissipative 
processes and the material compressibility which are very quickly increase during the final stage of compression 
of magnetic flux. 
 The compressibility of a conducting material reduces the effect of energy cumulation to a great extent 
[1]. Dissipative processes such as the turbulent diffusion and ohmic one, the turbulent mixing of a conducting 
material as a result of magnitohydrodynamic and convective unstabilities, divide the main scale of compression 

 into large number of small parts, in which dissipation prevails over generation, and mix a magnetic field with 
a material. The material expands on heating, pressure of magnetic field on conduction falls sharply. In these 
cases arising  turbulence is isotropic, and isotropic turbulence has not the properties of generations [5]. 

L

 This report deals with the case, when unfavourable for superhigh magnetic fields generation agents like 
magnitohydrodynamic and convective instabilities, compressibility and turbulence, become necessary conditions 
for the αω -dynamo-effect, which can help to generate high magnetic fields efficiently. 
 From the dynamo theory it is well known that the αω

R Lm

-dynamo-effect is generated in the convective 
zone of astrophysical objects with the availability of gyrotropic turbulence, differential rotating and seeding 
large-skale magnetic field of azimuthal or meridianal configuration [5-8]. Gyrotropic turbulence results from the 
Coriolis forces acting on rising (or lowering) convective cell in the medium stratified by density. For initiation 
of the dynamo effect, a high magnetic Reynolds number = υ η/ >> 1 [8], here  is the scale of motion 
of an electrically conducting material, 

L
υ  is its velocity, η  is the ohmic damping coefficient is required. In 

operation the characteristic spatial scale of the electrically conducting, moving continuum is reduced (divided) 
and in response to changing scale the magnetic Reynolds number Rm = lυ η/

l

, (here l  is the small scale of 
motion) is reduced. A necessary condition for dynamo to operate properly is that υ η ≈/ 1  [7].  
 Conditions required for initiation of the αω -dynamo-effect may be obtained under compression of 
quickly rotating and conducting, follow spherical shell by high magnetic field. During the process of collapse 
and compression of the rotating shell differential rotating  and gyrotropic turbulence one occur, and gyrotropic 
turbulence already has generating properties. 
 

Statement of the problem.  
 

 We deal with the compression of quickly rotating and conducting shell, placed in the centre of a 
solenoid, generating the high pulsed magnetic field. As a source of the high pulsed magnetic field, we select the 
MK-1 [1] explosive cascade magnetocumulative generator, which consists of a solenoid-shell, surrounded by a 
ring-shaped charge externally, and wire cascades. The initial magnetic field with duration as high as 100 μs and 
amplitude 0.2 MGs is created in the generator under discharge of the capacitor blocks into the solenoid-shell. At 
the instant the initial field is at a maximum, the charge is detonated. The arising convergent cylindrical blast 
wave accelerates the solenoid-shell to the centre, and it compresses the initial magnetic flux. The duration of 
compression pulse is equal to 10 μs. The magnetic field intensity at a maximum of a compression pulse is equal 
to 10 MGs. The region of a uniform magnetic field at a maximum occupies the area of several cubic centimetres, 
and the finite diameter is about one centimetre. 
 To suppers a moment proportional to Ω Η×  disturbing stable rotation of a body, it is necessary that 
the dynamically axis of rotation should be the same in direction with the magnetic field in the solenoid. For 
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symmetric collapse of the rotating shell it is necessary that the area of uniform magnetic field in the solenoid-
should be much greater than the geometrical dimensions of the shell and that the shell be in the centre of this 
uniform area at the compression beginning instant. 
 We set the parameters of the shell in accordance with the generator parameters. The initial diameter of 
the shell is equal to 1 cm, its thickness is equal to 0.1 cm, the shell is manufactured from copper and air is 
evacuated from its cavity. The shell spins up to 104 revolutions per second in a gyroscope with a free 
suspension. The depth of penetration (skin) of the initial magnetic field is approximately equal to the shell 
thickness, and the depth of penetration of quickly increasing magnetic field is much len than the shell thickness. 
 We conventionally break compression of the hollow shell by a high magnetic field down to several 
stages: 

1) diffusion of the initial magnetic field into the rotating hollow shell, 
2) collapse of the rotating shell under quickly increasing magnetic field with occurrence of differential 

rotation, 
3) generation of the azimuthal magnetic field by the differential rotation, 
4) compression of the rotating shell, its heating and occurrence of gyrotropic turbulence, 
5) generation of magnetic field by the αω -dynamo-effect. 

 
 Diffusion of magnetic field into conducting rotating shell is explained in the papers [10,11]. The 
distribution of force lines of magnetic field in spherical shell in maximum of the initial field is shown in Fig.1. 
 

Ω

 
 
Fig. 1. Diffusion of pulsed magnetic field into rotating 
shell.. 

 
 
Fig.2. Distribution of magnetic field within the 
collapsing shell at Rm>>1. 

If the pressure of magnetic field is much greater than the strength limit of the shell material, then the shell is 
recognised as fluid and its motion under electromagnetic forces is described in the context of magnetic 
hydrodynamics. At high rate of the shell collapse the magnetic Reynolds number is much greater than one 
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(Rm>>1), so the field is “frozen” into the shell material and it is transported with this material. Radial collapse of 
the shell and compression of magnetic flux by the shell are shown in Fig.2. The region of effective generation of 
azimuthal magnetic field is dotted. 
 This pattern is heavily distorted by the differential rotation, which occurs as a result of the Coriolis 
forces acting on the collapsing shell.  
 Without considering friction between layers 
differential rotation is appropriate to the conservation of 
angular momentum. 
 If for differential rotation , then the field 
is “frozen”into particles of medium. Interior parts move in 
a circle farther than exterior ones, and the azimuthal field 

 is extracted from the seeding meridianal field  

therewith, during one revolution of the outer boundary of 
the generation region, two closed magnetic force lines of 
the field are formed and they have distinct direction above 
and below the plane of equator (see Fig.3). 

Rm >> 1

Bϕ Bp

 The azimuthal field increases until the magnetic 
pressure will be equal to the hydrodynamic pressure 

 
B B

rpϕ

π
ρυΩ

4
= ,

 (1) 

 
 
Fig.3. Generation of azimuthal magnetic field by 
differential rotation. 

here υ is the rate of the shell collapse. When the azimuthal 
field peaks, then smoothing out imhomogeneity of 
differential rotation and damping of the field effectively 
operate. From the formula (1) one can see that, the greater are the rotation velocity and the collapse rate, the 
greater the value of azimuthal field which can result from this. 
 The following phase of the process  includes compression of central region of the shell and its heating. 
As a result of spherical cumulation, inner layers of the shell gain the high radial rate of collapse. The inner layers 
converge to the centre forming the blast wave, so on impact a large part of the progressive kinetic energy of the 
shell transforms into the elastic energy of compression and heating of the material.  The shell is in the 
compressed condition for as long as increasing forces of magnetic pressure act on its conducting outside. 
Cylindrical cumulation and spherical one are accompanied by quick growth of magnetohydrodynamic and 
convective instabilities at the interfaces “fluid-field”, “fluid-gas”. This brings into mixing of the material with 
the field and into forming of turbulent motions. With the availability of rotation, density gradient and 
temperature gradient turbulence become gyrotropic [7,8]. 
 Gyrotropic turbulence occur when the correlation< >≠υ υrot 2 0 , here  is the velocity of rising 
(lowering) convective cells, υ  is the velocity of expanding (contracting) of cells]. Existence of such 
correlation points to the fact that the right spiral and the left one are not on equal terms. A measure of spiral is 

recorded as 

υ

2

= ′υ ( )< > ∇ρ
−

υ υ Ω ρrot 2
1

l ( )= ′ ∇ρ
−

υΩ ρ
1

l< >υ υrot 2 , here  is the correlation length, 

 is the angular velocity of macro-object rotation, 

′l
Ω ρ and ∇ρ  are respectively the density and the density 
gradient of the medium, in which the cell rises (lowers).  
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 In the compressed shell the Coriolis force 
, acting on radially rising (lowering) 

convective cells, is a source of differential rotation. 
Differential rotation is generated, if th adial component 

[F = 2ρ υΩ

B

 
 
Fig.4. Generation of meridianal magnetic field by 
convective cells. 

]

e r υr  
is greater than the others υθ  and υϕ . In other words, the 

generator of angular velocity operates only in the absence of 
equivalence of radial direction and angular one for the 
momentum flow of random velocities [12,13]. 
 A convective element, rising or lowering along the 
radius, expands or it is contracted because of density gradient, 
that is , it gains the additional components of velocity - υθ  

and . Therewith arising the momentum of Coriolis forces 

gives the element additional rotation. The convective cell acts 
on the azumuthal (meridianal) magnetic field and forms small-
scale loops from it (see Fig.4). Then, because of ohmic 
dissipation the loops close in another way and form the large-
scale magnetic field. Generation of magnetic field by the 

-dynamo-effect is covered by the equation 

υϕ

αω

 [ ] ( )α η ηB rot vB BT= + − + Δ
∂
∂
B rot
t

,

  (2) 

here ( ) ( )α υ υ τ= − < > = − ′1 3 2 32
2/ /rot l Ω∇ρ ρ/ , τ  is the correlation time, - the coefficient of 

turbulent diffusion. 
ηT

 The joint action of the -effect and the differential rotation leads to generation of dynamo waves. The 

direction of propagation of the waves depends on the sigh of product 

α
( ) ( )α θ θr r, ∇Ω ,  [5,7,8]. 

 
 Generation of azimuthal magnetic field during the collapse of rotating shell. 

  
 The pulsed magnetic field acts on the rotating conducting shell by forces of magnetic pressure in 
accordance with the distribution of magnetic field intensity on the surface of conducting shell. For a well-
conducting hollow shell placed in the centre of a long solenoid shell, in the case when the skin is much less than 
the shell thickness, this distribution in spherical coordinates has the tangential component [4]. 

 H H
R

R rθ θ
θ=

−

⎛

⎝
⎜

⎞

⎠
⎟0

2

2 2 2sin
sin ,   (3) 

here  is the magnetic field intensity in the solenoid without shell, Η 0 R  is the inside radius of the solenoid 
shell, r  is the outside radius of the shell. On the other hand, on the rotating shell the centrifugal force acts, 
which is recorded as 

    (4) F s2= m ri iΩ θin ,

here, i is the serial number of a “fluid” particle of the shell, m  is the mass of a particle, Ω  is its angular 
velocity,  is the distance from the shell centre to a particle, 

i

ri θ  is the angular counted from the rotational axis, 
therewith the rotational axis is coincident with the axis of solenoid-shell. 
 Radial collapse of the rotating spherical shell occurs with formation of the compound differential 
rotation  in accordance with the conservation of angular momentum. To find , it is necessary 
to solve the sophisticated two-dimensional equation of motion of rotation spherical shell under the influence of 
high pulsed magnetic field in the MK-1 generator, but for estimate of the differential rotation and for estimate of 
azimuthal magnetic field value it is sufficiently to solve the one-dimensional equation of the shell motion, in 
which  depends only on 

(Ω r,θ

Ω

) )(Ω r t, ,θ

r , numerically. In this case the equation of motion is significantly simplified, and 
without considering viscosity it can be recorded as 
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 ( ) [ ]∂υ
∂

υ∇ υ
ρt

P+ = − ∇ + ∇
1 1

2
2Ωr ,  (5) 

here P  is the pressure of magnetic field on the shell surface. Such simple simulation always describes the phase 
of acceleration adequately. It can not be used for prediction of the maximum velocity of the inner surface at 
once, because the velocity will be limited essentially by the compressibility of shell material [2], but it is unable 
as the upper estimate of velocity of the inner surface. The lower estimate can be obtained simply, based on the 
results of the paper [14] and on the computations for the collapse of rotating shell. From them the instantaneous 
distribution of pressure over the shell radius can be obtained for any instant and for any region. Thereafter, for 
estimate of the elastic compression the well-known equation of state should be used [15]. Substituting the 
maximum density found from the equation of state and the thickness of compressed shell into equation (5), we 
begin a calculation from the initial radius of inner surface identical to that for incompressible shell, and we 
continue the calculation to the radius, for which the distribution of pressure over instants was defined. These 
calculations give us the lower estimate for the rate of collapse of inner surface of rotating shell. 
 The  results of computational solution of one-dimensional equation of motion of rotating “instantly 
compressed“  conducting shell under high pulsed magnetic field in the MK-1 generator in the fast rotation 
approximation are shown in Fig. 5, Fig.6. 
 Differential rotation curve dipole lines of force extending them in azimuthal direction (see Fig.3), and 
ohmic dissipation recloses them forming the azimuthal magnetic field . Generation of the azimuthal magnetic 

field by differential rotation is described by the azimuthal component of the equation 

Bϕ
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Fig.5 Lower estimate for the velocity of inner surface of “ 
instantaneously compressed“ shell, rotating with the initial 
angular velocity Ω=2π 104 с-1, as function of radius.
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Fig.6 Lower estimate for the angular velocity of inner 
surface of “instantaneously compressed” shell, rotating 
with the initial angular velocity Ω=2π 104 с-1, as function 
of radius.

 ( )∂

∂
υ ηΔϕ
ϕ

B
t

Bp= −rot ϕB

8/

.  (6) 

 We solve this equation in the kinematics approximation, that is, when . In this 
case we neglect of reverse influence of the field on the large-scale velocity fieldυ . The azimuthal field 

increases until arising magnetic stress cancels inhomogeneity of rotation. 

ρυ π2 22/ >> B
ϕ

 The outer boundary of generation region is chosen from the condition of effectiveness of influence of 
differential rotation on generation of azimuthal magnetic field from the seeding meridianal magnetic field in the 
centre of collapsed shell (see Fig.2, where the outer boundary is dotted). We find the value of meridianal field 
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Fig. 7. (r,θ) - dependence of the value of azimuthal magnetic field Bϕ  in 
the core of shell of radius r. 

from the equation of motion, and we consider its distribution in the region of generation as dipole distribution 
which may take the form of the azimuthal component of the vector potential. Then, in spherical coordinates the 
distribution of the field is recorded as  

 A r B rpϕ θsin sin=
1
2

2 2 θ .  (7) 

For the case of permanent rotation the hydromagnetic equation (8) may be recorded as follows: 

 
∂
∂

∂
∂ θ

∂
∂θ

θ
∂
∂θ θ η

θϕr
r

r
B

B dp2
2

2
01 1 2

+ −
⎧
⎨
⎩

⎫
⎬
⎭

=
sin

sin
sin

sin cos
Ω

θ,  (8) 

here  is the outer boundary of the generation region. Region, which is above this boundary, scarcely affects 
the generation of magnetic field, and in the vicinity of the centre the azimuthal component is equal to zero, thus 
the generation region has both upper boundary and lower one. The particular solution of this non-homogeneous 
equation takes the form: 

d

 

 ( )B
B d

rp
ϕ η

θ= −
Ω0

2
2

3
1 sin cosθ.   (9) 

 Adding the solution of the homogeneous equation, which follows from the condition =0 (at the 

boundary 

Bϕ

r d= ), we obtain the general solution of equation (8)  
 

 ( )B
B

r dp
ϕ η

θ= − θ
Ω0 2 2

3
cos sin .  (10) 

 The ( r , )-dependence of the azimuthal magnetic field on the intervals , θ [ ]r d d∈ / ,5 [ ]θ π∈ 0 2, /

102

 

is shown in Fig.7. Substituting values of parameters  Gs, s-1,  cm2/s ( for 

example, for the copper shell), d  cm, 

Bp = 106 Ω0 10= 6 η = ⋅16.
= 01. r = 0 05,  cm, θ π= / 4

ϕ = ⋅7 5.
, which are found from the equation of 

motion, into (12), we obtain the value of azimuthal magnetic field  Gs in one revolution of the 

outer boundary of the generation region. 
B 106

 Differential rotation gaim the value of azimuthal magnetic field until the Loretz force 
balances Coriolis force (1), therefor, to generate high magnetic fields it is necessary that the shell should have 
the maximum initial angular speed, an effective conductivity, a high rate of collapse and a high value of the 
seeding meridional magnetic field. 
 

The dynamo effect in a rotating shell 
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 At the stage of compression a high part of both the progressive kinetic energy  and the energy of 
increasing pulsed magnetic field transform to the elastic energy of shell material compression and the shell 
heating [16,17,18]. By the time of compression beginning in the central region of the shell the large-scale 
azimuthal magnetic field has been generated, and it is the seeding field for the αω - dynamo process (that is , it 
initiates the -dynamo process). αω
 The joint action of the  effect and the differential rotation leads to the generation of the exponentially 
increasing or damped dynamo waves. It is necessary to solve this problem numerically because of its 
sophistication. Here there is only the qualitative representation of the initiation and the propagation of dynamo 
waves in the compressed shell, at the condition of homogeneity (in both space and time) of differential rotation, 
the  effect and coefficient of turbulent diffusion, to the kinematic approximation. Such representation is 
possible only in the case when the period of dynamo process is much less than the time of pulse increasing in the 
MK-1 generator. 

α

α

 This process is governed by equation (4). To show generation of dynamo waves, it is conveniently to 
transfer from the vector B to the two scalars - the azimuthal field  and the Bϕ ϕ -component of the vector 

potential  of meridional field (it is always possible in the case whenAϕ ∂ ∂ϕ/ = 0): 

 
( )

( )

B
r

A

B
r r

rA

r =

= −

1

1
sin

sin ,

.

θ
∂
∂θ

θ

∂
∂

ϕ

θ ϕ

 (11) 

Then in the spherical coordinates equation (4) takes the form: 

 
( )

( ) ( )

∂

∂
α η η

∂

∂
∂Ω
∂

∂
∂θ

∂Ω
∂θ

∂
∂

θ η η

ϕ
ϕ ϕ

ϕ
ϕ ϕ

A
t

B A

B
t r r r

rA B

T

T

= − +

= −⎧
⎨
⎩

⎫
⎬
⎭

− +

⎧

⎨
⎪⎪

⎩
⎪
⎪

Δ

Δ

,

sin .1
 (12) 

Eliminating  from the second equation, we obtain the equation for the vector potential: Bϕ

 ( ) ( )∂
∂

η η
α ∂Ω

∂
∂
∂θ

∂Ω
∂θ

∂
∂

θ ϕt r r r
r AT− +⎛

⎝⎜
⎞
⎠⎟

− −⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=Δ

2

0sin ,  (13) 

which has the wave solution of the tipe 

 ( )A i tϕ krω= −exp .  (14) 

We substitute (14) into (13). Suggesting, that Ω  is a function only of the r  and that , we obtain the 
appropriate dispersion relation with the solution  

ηТ >> η

 (ω η μ η1 2
22

, cos sin ,= − ± ⋅ + ± ⋅
k
r

R i k RT T )μ   (15) 

where 

 ( )

( )

R
r k
r

k r r
rk r

T

T

=
−

⋅

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=
+

αΩ θ η

μ

μ
αΩ θ

η αΩ

0 0
2 2 2

3

1 2

0 0
2

2 2
0 0

2

4
2

2
4

cos
cos

,

tg
cos

cos
.

/
r

θ

   (16) 
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Then, for  and α > 0 ∇Ω < 0  in the bounded neighbourhood ( )r,θ  we obtain the real part of the solution of 
equation (13) 

 
( )
( )

A e t k

B e t k

t

t

ϕ
γ

ϕ
γ

ω θ

ω θ π

= −

= − +

∗

∗

cos ,

cos / ,4
  (17) 

where  is the frequency and ( )ω∗ = Im ω ( )γ ω= Re  is the increment of dynamo waves. The waves propagate 
along the surface  in the direction of increasing ( )r const=Ω θ , therewith at ∇Ω  the phase of the 
azimuthal field is  ahead of . In the other important limiting case 

< 0
( )π / 4 Aϕ Ω Ω= θ  they propagate with the 

frequency and the increment, which are identical to those in the above-mentioned case along radius. The 
dynamo waves occur, where the product α ⋅∇Ω , whose sign determined the propagation direction for thease 
waves, is different from zero. In the case, when Ω  is a function of both r  and θ  and when ∇Ω < 0 , the 
dynamo waves propagate in the direction of increasing r  and θ . To gain the field it is necessary that 

, then the condition of excitation of increasing mode takes the form ( )ω > 0Re
 

 α θ η
r
r

kT
0
2

0
2 24Ω cos .>   (18) 

 The key questions of the dynamo theory are both the value and the form of the tensor of turbulent 
diffusion in convective region [5,7,20]. This tensor is highly anisotropic, and its components may differ in value 
and in sign. The components  of the tensor of turbulent diffusion are usually fitted to be in accordance with the 
observed parameters of dynamo model. To make rough estimate of ηT , one can use an approximation of mixing 

length, when ( )ηT = ⋅1 3/ ,*l

υ
υ (here * is the mixing length, which is equal in orderto the density 

scaleρ ,  is the root-mean-square velocity [8], but parameters * and  are not exactly defined. 
Sometimes the total convective region or the size of large cells are chosen as l * . 

l

/ ∇ρ l υ

 In our case there are not some tentative parameters (for example, as for solar dynamo model),and 
furthermore η ,  and  are time dependent. Then we can make only rough estimate of the value T α Ω ηT , at 
which generation of dynamo waves is possible (at the condition, that both ηT  and the other terms of (20) are 
constant and homogeneous). 
 For the generation region with the outer radius r0 01= .  cm and the inner r = 0 05.

60 α =

 cm the dynamo 

waves with the length   cm will build up, beginning with  s-1,  sm/s, λ ≈ 01. Ω0 2 1= π ⋅4 105

ηТ = ⋅55 103.  sm2/s, . Under thease conditions, cosθ = .0 9 ( )Re ω > 0  is greater than zero and the 

dynamo effect can effectively generate dynamo waves with the period Тαω ≈ −10 7 s. 
 The dynamo effect leads to increasing of the magnetic flux and to the field gain as a whole. During the 
process of the αω dynamo effect operating the wave with γ >  is quickly increasing and the wave with 

 being quickly damped, therewith, over one period of the oscillatios the first harmonic will have increased 
by a factor of , and the second harmonic will have decreased by this factor. By this is meant 
that the feeble seeding field is necessary to generate magnetic field by 

0
γ < 0

( ) 535π =exp 2
αω dynamo effect. The field increases 

until the dynamic balance becomes between the Coriolis forces and the Lorentz forces. 

Conclusion 
 This report considers the process of generation of azimuthal magnetic field by differential rotation, 
arising under the collapse of shell in high pulsed magnetic field, in a kinematic approximation. 
 The process of generation of high magnetic fields by αω -dynamo effect is discussed. The necessary 
conditions for increasing of dynamo waves in the compressed shell are presented. 
 It has been shown, that the αω -dynamo effect can effectively generate high magnetic fields from 
feeble seeding fields to allow increasing of the shell thickness the rotation velocity and the initial radius of shell. 
Increasing of thease parameters will lead to more effective energy extraction from the source of high pulsed 
magnetic field and to transformation of this energy into more power dynamo waves. 
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